

Home Search Collections Journals About Contact us My IOPscience

Hydrostatic pressure electron paramagnetic resonance studies of the phase transition discontinuity in $RbCaF_3$ up to 800 MPa

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys.: Condens. Matter 6 9429 (http://iopscience.iop.org/0953-8984/6/44/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 20:59

Please note that terms and conditions apply.

Hydrostatic pressure electron paramagnetic resonance studies of the phase transition discontinuity in RbCaF₃ up to 800 MPa

M Krupski† and J Y Buzaré‡

† Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

‡ Equipe de Physique de l'Etat Condensé, Unité de Recherch associée au CNRS 807, Université du Maine, 72017 Le Mans Cédex, France

Received 25 April 1994, in final form 28 June 1994

Abstract. The influence of hydrostatic pressure on the cubic-to-tetragonal phase transition in RbCaF₃ is studied by monitoring the EPR spectra of the $Gd^{3+}-O^{2-}$ pairs and Gd^{3+} centres. The phase transition remains of first order up to 800 MPa and the discontinuity of the order parameter φ at T_c slightly increases with increasing pressure. Similarly, the nonlinearity of the cubic parameter $b_4^0(T)$, caused by the rotational fluctuations, near T_c becomes larger under pressure. The pressure shift of the phase transition temperature is determined: $dT_c/dp = (36.5 \pm 0.3)$ K GPa⁻¹. The values of T_c as well as dT_c/dp are interpreted within the rigid-sphere model.

1. Introduction

Influence of hydrostatic pressure on the structural phase transition in RbCaF₃ ($T_c = 195$ K) from a cubic phase to a tetragonal phase was first studied using the EPR of Gd³⁺ centres (Müller *et al* 1980). It was found that up to 120 MPa the transition temperature increases linearly at 36 K GPa⁻¹, but neither the magnitude of the first-order discontinuity parameter nor its character is altered by pressure. Similar conclusions have been drawn from our preliminary pressure EPR studies of the critical phenomena in the vicinity of the phase transition in RbCaF₃:Gd³⁺-O²⁻ at 400 MPa (Krupski and Buzaré 1991). Nevertheless, from EPR experiments on RbCaF₃:Gd³⁺ crystals, the crossover from the first-order to continuous transition was observed under the uniaxial stress applied along [001] (Buzaré *et al* 1979). The critical end point was found in [111]-stressed RbCaF₃ by monitoring the EPR lines of Gd³⁺-O²⁻ pairs (Buzaré *et al* 1985).

One may ask whether it is possible to change the order of the phase transition with hydrostatic pressure. Some theoretical considerations indicate that it is possible (Benguigui 1973). To answer this question, Trokiner and Zanni-Theveneau (1988) performed NMR experiment under hydrostatic pressure up to 540 MPa. They suggest a crossover of some critical exponents towards tricritical values with increasing hydrostatic pressure. This result and the disappearance of the phase coexistence at high pressures are interpreted as the occurrence of a tricritical point near 540 MPa above which the transition should become continuous.

The aim of this study is to examine whether this prediction is justified. The effect of the hydrostatic pressure on the critical behaviour of $RbCaF_3$ will be studied up to 800 MPa.

2. Experiment

Single crystals of RbCaF₃ doped with Gd₂O₃ were prepared by the Bridgman–Stockbarger technique in the Equipe de Physique de l'Etat Condensé (Le Mans) with the technical assistance of G Niesseron. The Gd³⁺ ion enters the Ca²⁺ octahedral site and the Gd³⁺-O²⁻ pair substitutes for the Ca²⁺-F⁻ bond.

EPR measurements at a frequency of 9.5 GHz under high hydrostatic pressures were carried out using the special spectrometer station constructed recently in the Institute of Molecular Physics in Poznań. This equipment is a modified version of the apparatus used previously (Stankowski et al 1976). Now, the cylindrical corundum resonator TE_{112} mode is coupled to a microwave (X-band) coaxial line and placed inside a reinforced pressure chamber made of hardened beryllium bronze. Because of these improvements it is possible to perform a high-pressure EPR experiment up to 800 MPa in the temperature range 80-400 K. The pressure of the transferring liquid is produced within the steel highpressure cylinder and delivered to the pressure chamber via a capillary. Petroleum ether is used as the pressure-transmitting medium. The pressure is monitored with a standard manometer to the accuracy of 2 MPa. The desired temperature within the chamber is established by adjusting the rate of liquid-nitrogen flow through the heat exchanger placed immediately upon the pressure chamber. The temperature is controlled with an accuracy better than 0.1 K and measured with a copper-constantan thermocouple. 80 Hz magnetic field modulation is provided by modulation coils mounted outside the pressure chamber. A relatively higher filling factor of the corundum resonator partly compensates for the lower sensitivity; compared with the standard EPR cavity system and 100 kHz modulation, the EPR signal is only reduced by half.

The samples of RbCaF₃ with Gd^{3+} and $Gd^{3+}-O^{2-}$ centres were cut along [001] axis into 5 mm rods of 1.5 mm diameter. Each sample was placed in the centre of the corundum resonator with the cylindrical axis perpendicular to the direction of the static magnetic field.

3. Results

The influence of hydrostatic pressure on the phase transition temperature T_c in RbCaF₃ and on the rotation angle φ of the fluorine octahedra (the order parameter) has been studied by monitoring the Gd³⁺-O²⁻ EPR spectra up to 800 MPa. The magnetic field was perpendicular to the [001] direction and at an angle $\theta = 16^{\circ}$ from the [100] axis. In this direction the line previously labelled A (Buzaré *et al* 1981) is highly sensitive to rotation of the octahedra in the (001) plane. From the angular dependence of the EPR lines in RbCaF₃:Gd³⁺-O²⁻ crystals (Buzaré *et al* 1981) we find that the slope of the A-line anisotropy at $\theta = 16^{\circ}$ is (6.8 ± 0.4) mT deg⁻¹. At the phase transition, alternate rotation of CaF₂ octahedra around one of the fourfold axes yields two orientations of the Gd³⁺-O²⁻ centres, $\theta \pm \varphi$, below T_c . Thus, in the tetragonal phase, the A line splits into two components. This splitting allows us to determine the angle of rotation of the fluorine octahedra, i.e. the order parameter of the transition.

Figure 1 shows the temperature evolution of the A line when passing through the phase transition under a constant pressure of 800 MPa. At temperatures above T_c the broadening of the EPR line is observed near T_c . At T_c we observe the sudden onset of two satellite signals, one on each side of the central line. The splitting between these lines increases during further cooling. Such spectrum results from the multiple-domain structure of the sample in the tetragonal phase. The satellite signals correspond to the [001] domains, while

Pressure EPR studies in RbCaF₃

Figure 1. Temperature changes in the EPR spectra (A line for $\Theta = 16^{\circ}$) of RbCaF₃:Gd³⁺-O²⁻ at 800 MPa ($\nu = 9.5$ GHz) in the vicinity of the phase transition.

the central signal is assigned to the [100] and [010] domains. The central line should remain unsplit when the static magnetic field H is in the (001) plane. Small misalignment of the sample causes the apparent splitting of the central line (figure 1) which does not contribute to the satellite [001] domains.

The behaviour of the order parameter φ as a function of temperature below T_c at five constant pressure settings, namely 0.1 MPa (atmospheric), 350 MPa, 600 MPa, 700 MPa and 800 MPa, is shown in figure 2. At T_c a sudden splitting of the A line is observed for all pressure values and φ jumps from zero to φ_c , its initial value.

In order to compare our measurements with those obtained by Trokiner and Zanni-Theveneau (1988) we assume that the temperature dependence of the order parameter φ obeys the power law according to the relation:

$$\varphi = A(T_0 - T)^{\beta}$$

where A, T_0 and the critical exponent β are adjustable parameters. Because of the discontinuity at the phase transition the temperature T_0 obtained by extrapolation to $\varphi = 0$ (broken line) is not equal to the phase transition temperature T_c . The difference between T_0 and T_c is small (about 1 K) and does not depend on pressure. The experimental and calculated values of the present study are collected in table 1.

The changes in the critical exponent β induced by pressure are small; at 0.1 MPa, $\beta = 0.28$, between 350 and 700 MPa, β is equal to about 0.25 and, at 800 MPa, $\beta = 0.23$.

Figure 2. The temperature dependence of the order parameter φ for five values of the hydrostatic pressure in RbCaF₃:Gd³⁺-O²⁻.

Table 1. The values of the experimental phase transition temperature T_c and the initial values of the order parameter φ_c in RbCaF₃:Gd³⁺-O²⁻ measured at different values of hydrostatic pressure p. T_0 , β and A are the best-fit parameters in the formula $\varphi = A(T_0 - T)^{\beta}$.

p (MPa)	<i>Т</i> с (К)	φ_c (deg)	<i>Т</i> 0 (К)	β	A (deg K ^β)
0.1	193.2	1.7	194.2	0.28	1.7
350	206.2	1,8	206.9	0.25	1.9
600	215.0	2.0	216.2	0.25	1.9
700	218.0	1.9	219.8	0.26	1.9
800	222.4	2.0	223.2	0.23	2.1

At the same time, the value of the order parameter at T_c is observed to increase from $\varphi_c = 1.7^\circ$ at 0.1 MPa to $\varphi_c = 2.0^\circ$ at 800 MPa.

Figure 3 shows the dependence of T_c on the hydrostatic pressure up to 800 MPa. In the whole range of pressures the transition temperature varies linearly at the rate $dT_c/dp = (36.5\pm0.3)$ K GPa⁻¹. This value is in accord with the previous EPR measurements (Müller *et al* 1980) but differs from the NMR data (Trokiner and Zanni-Theveneau 1988).

In order to confirm the rise in the discontinuity at the phase transition in RbCaF₃ under pressure we performed a study of the temperature variations of the cubic zero-field splitting parameter b_4^0 above T_c at atmospheric pressure and at 700 MPa. At temperatures higher than $T_c + 30$ K, b_4^0 changes with temperature, linearly (dotted lines in figure 4) decreasing at the slope $db_4^0/dT = -5.1 \times 10^{-7}$ cm⁻¹ K⁻¹, independent of pressure. The deviation of b_4^0 from the linear dependence near T_c increases when pressure is applied: $\Delta b_4^0 = 0.057 \times 10^{-4}$ cm⁻¹ and 0.089×10^{-4} cm⁻¹ at 0.1 MPa and 700 MPa, respectively.

Figure 3. Variation in the transition temperature with pressure in RbCaF₃: \bigcirc , from the temperature dependences at constant pressure (see figure 2); \bigcirc , from the pressure dependence at constant temperature.

Figure 4. The temperature dependence of the zero-field parameter b_4^0 at atmospheric pressure and at 700 MPa for RbCaF₃:Gd³⁺ in the cubic phase (v = 9.5 GHz; $H \parallel [100]$).

4. Discussion

4.1. Discontinuity of the phase transition as a function of pressure

From our experimental results, we conclude that the phase transition between 0.1 and 800 MPa maintains its weak first-order character. The discontinuity of the phase transition becomes more pronounced under pressure; the initial value φ_c of the order parameter at T_c increases (figure 2). On the other hand, we observe a reduction in the critical exponent β which amounts to 0.23 ± 0.01 at 800 MPa. This value is lower than the theoretical value near the tricritical point $\beta = 0.25$ (Trokiner and Zanni-Theveneau 1988). Nevertheless, the phase transition at 800 MPa is still of first order.

Our results strongly support the view that the cubic-to-tetragonal phase transition in $RbCaF_3$, anticipated to be the continuous phase transition according to the mean-field theory, is of first order. It is driven by critical fluctuations; the anisotropic soft-mode behaviour reflects nearly two-dimensional correlated octahedra sheets (100), (010) and (001) which tend to keep the crystal cubic (Natterman 1976). This behaviour is not modified by the hydrostatic pressure which does not break the symmetry, contrary to the effects induced by the uniaxial stress.

4.2. Precursive behaviour of the cubic parameter b_4^0

The deviation of b_4^0 from the linear dependence near T_c , caused by the local rotational fluctuations in the cubic phase, is described by $\Delta b_4^0 = \frac{5}{4} b_4^0 \sin^2(2\Phi)$ (Buzaré et al 1980). Φ is the most probable value of the angle of the octahedra rotation representing the fluctuation distribution. This angle calculated at T_c equals 2.6° at normal pressure and 3.2° at 700 MPa, which means that the rotational fluctuations in the cubic phase are larger under pressure. This phenomenon may be related to the disordered high-temperature phase, previously described by Rousseau (1979). The fluorine atoms are pushed out of the Ca-Ca line into four walls in the direction of the diagonals of the faces of the cube formed by the Rb atoms; this can be explained by the negative value of $\frac{1}{2}a - (r_{Ca} + r_F)$. In the high-temperature phase, the fluorine atoms undergo hopping between these four wells. The precursive behaviour of b_4^0

gives evidence of slowing down of the hopping motion. Our results also show increase in the disorder with increasing hydrostatic pressure. This is due to the reduction in the lattice parameter a which gives a larger negative value of $\frac{1}{2}a - (r_{Ca} + r_F)$, and hence a larger displacement of the fluorine atoms from the centre of the cube faces.

4.3. Rigid-sphere model interpretation

The value of T_c in RbCaF₃ and its pressure coefficient dT_c/dp result from the rigid-sphere model which was successfully applied to the antifluorite complex A₂MX₆ and elpasolite A₂BMX₆ compounds (Krupski 1983, 1989). Now, we apply this model to the description of structural instabilities at T_c for perovskites, in particular to the RbCaF₃ crystal. The model assumes free motion of the cation A⁺, regarded as a rigid sphere, inside the spherical cavity made up of 12 adjacent halogen ions. The phase transition temperature predicted from this model depends on the $n = R_A/R_h$ ratio of the cation radius R_A to the cavity radius $R_h = a\sqrt{2}/2 + R_X$ and is a function of the external pressure p. In particular,

$$T_{\rm c} = \frac{4\pi R_{\rm A}^3}{3k} \frac{1-n}{n^3} (p+p_1)$$

with the lattice pressure p_1 (the electrostatic contribution) (Krupski 1983) given by

$$p_1 = \frac{e^2}{12\pi\epsilon_0} \frac{M_a}{a^4}.$$

The Madelung constant M_a , calculated for perovskites using the formula of Simon and Zeller (1974), is given by

$$M_{\rm a} = 2.035\,36q_{\rm A}^2 + 7.565\,92q_{\rm A}q_{\rm X} + 17.908\,04q_{\rm X}^2.$$

For RbCaF₃ the effective charge q_A of ions A⁺ and the effective charge q_X of ions F⁻ are known from the lattice dynamics calculation (Ridou *et al* 1986):

$$q_{\rm A} = 0.8$$
 $q_{\rm X} = -0.81$.

The value of the lattice constant *a* of the cubic phase should be taken at T_c . The room-temperature value a = 0.4455 nm (Ridou *et al* 1986) is extrapolated to T_c using the thermal expansion coefficient $\lambda = 1.68 \times 10^{-5}$ K⁻¹ (Rewaj *et al* 1992). Hence, $a_c = 0.4448$ nm.

In the calculation of T_c we enter the Pauling radii corrected for twelvefold coordination (Krupski 1989): $R_X = 0.153$ nm and $R_A = 0.160$ nm. The calculated value of T_c when the external pressure p is neglected equals 192.77 K. This value is in good agreement with the experiment.

In order to calculate the value of dT_c/dp we assume that, firstly, both pressure and temperature affect the lattice constant according to

$$a = a_0(1 + \lambda \ \Delta T - \beta p)$$

12

and, secondly, the external pressure modifies ionic radii proportionally to the magnitude of the pressure:

$$R_{\rm X} = R_{\rm X0}(1 - \gamma_{\rm X} p) \qquad R_{\rm A} = R_{\rm A0}(1 - \gamma_{\rm A} p)$$

where a_0 , R_{X0} and R_{A0} are the appropriate dimensions at p = 0, β is the linear compressibility of the crystal, γ_X and γ_A are the compressibilities of the corresponding ions, and $\Delta T = T_c - T_{C0}$ with T_c and T_{C0} the phase transition temperatures for external pressure p and p = 0, respectively.

Because of the thermal vibrations and the free space between the ions, γ_X and γ_A should be less than β . Since it is difficult to estimate the ionic compressibility, we assume that $\gamma_X = \gamma_A = \beta$ and $\beta = 6.6 \times 10^{-6}$ MPa⁻¹ for RbCaF₃ (Rewaj *et al* 1992). Taking into account these modifications of the rigid-sphere model we arrive at $dT_c/dp = 40.8$ K GPa⁻¹. The value of dT_c/dp is very sensitive with respect to the values of γ_X and γ_A in comparison with β . For example, if we assume that $\gamma_X = \gamma_A = 0.99\beta$, then $dT_c/dp = 32.6$ K GPa⁻¹. On the other hand, for the rigid lattice ($\beta = 0$ and $\gamma = 0$) we obtain that dT_c/dp is 12 K GPa⁻¹. It renders the introduced adjustments of the rigid-sphere model necessary to account for the observed shift in T_c under hydrostatic pressure. Additional calculations of T_c and dT_c/dp for the family of the halogen perovskites will be attempted within the rigid-sphere model, where the different kinds of interaction will be accounted for. It should allow better understanding of the nature of the rotational phase transition in perovskite compounds.

Acknowledgment

This work was supported by the Research Project KBN-2-1303-91-01 of the Scientific Research Committee.

References

Benguigui L 1973 Phys. Status Solidi b 60 835 Buzaré J Y, Berlinger W and Müller K A 1985 J. Physique Lett. 46 L-201 Buzaré J Y, Fayet J C, Berlinger W and Müller K A 1979 Phys. Rev. Lett. 42 465 Buzaré J Y, Fayet-Bonnel M and Fayet J C 1981 J. Phys. C: Solid State Phys. 14 67 - 1980 J. Phys. C: Solid State Phys. 13 857 Krupski M 1983 Phys. Status Solidi a 78 751 – 1989 Phys. Status Solidi a 116 657 Krupski M and Buzaré J Y 1991 Proc. Conf. on Radio and Microwave Spectroscopy (1991) (Poznań: A Mickiewicz University Press) p 315 Müller K A, Berlinger W, Buzaré J Y and Fayet J C 1980 Phys. Rev. B 21 1763 Natterman T 1976 J. Phys. C: Solid State Phys. 9 3337 Rewaj T, Krupski M, Kuriata J and Buzaré J Y 1992 J. Phys.: Condens. Matter 4 9909 Ridon C. Rousseau M and Garvais F 1986 J. Phys. C: Solid State Phys. 19 5757 Rousseau M 1979 J. Physique Lett. 40 L439 Simon G and Zeller G R 1974 J. Phys. Chem. Solids 35 187 Stankowski J, Gałęzewski A, Krupski M, Waplak S and Gierszal H 1976 Rev. Sci. Instrum. 47 128 Trokiner A and Zanni-Theveneau H 1988 J. Phys. C: Solid State Phys. 21 4913